

E22-170M 系列产品规格书

SX1262 170MHz 贴片型无线模块

目录

免责甲明和版权公告	
第一章 概述	
1.1 简介	3
1.2 特点功能	
1.3 应用场景	∠
第二章 规格参数	∠
2.1 射频参数	∠
2.2 电气参数	
2.3 硬件参数	
第三章 机械尺寸与引脚定义	5
3.1 E22-170M22S 机械尺寸及引脚定义图	5
3.2 E22-170M30S&E22-170M33S 机械尺寸及引脚定义图	6
第四章 基本操作	1
4.1 硬件设计	1
4.2 软件编写	8
第五章 推荐电路	
5.2 E22-170M 系列推荐电路图	
第六章 常见问题	
6.1 传输距离不理想	
6.2 模块易损坏	
6.3 误码率太高	10
第七章 焊接作业指导	10
7.1 回流焊温度	10
7.2 回流焊曲线图	11
第八章 相关型号	11
第九章 天线指南	12
9.1 天线推荐	12
修订历史	12
关于我们	12

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。 文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵 权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责 任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反 言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

文中所得测试数据均为亿佰特实验室测试所得,实际结果可能略有差异。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

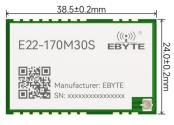
最终解释权归成都亿佰特电子科技有限公司所有。

注意:

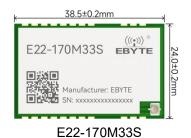
由于产品版本升级或其他原因,本手册内容有可能变更。亿佰特电子科技有限公司保留在没有任何通知或者提示的情况 下对本手册的内容进行修改的权利。本手册仅作为使用指导,成都亿佰特电子科技有限公司尽全力在本手册中提供准确的信息,但是成都亿佰特电子科技有限公司并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。

第一章 概述

1.1 简介


E22-170M 系列产品是基于 Semtech 生产的全新一代 LoRa™ 射频芯片 SX1262 为核心自主研发的超小体 积并适用于 170.125MHz 贴片式 LoRa™ 无线模块。 由于采用原装进口的 SX1262 为模块核心,与上一代 LoRa™ 收发器相比,抗干扰性能与通信距离得到了进一步提升。

由于其采 用全新的 LoRaTM 调制技术,在抗干扰性能、通信距离都远超现在的 FSK、GFSK 调制方式的产品。该模块主要针对智能家庭、无线抄表、科研和医疗以及中远距离无线通信设备。该产品可覆盖 150.125~170.125MHz 适用频率范围并向下兼容 SX1278、SX1276。使用工业级高精度 32MHz 有源温补晶振(TCXO)。


下图三款模组封装及功率不同,且为纯射频收发模块,需要使用 MCU 驱动或使用专用的 SPI 调试工具。

E22-170M22S

E22-170M30S

1.2 特点功能

- 与 SX1276 模块相比, SX1262 模块具有功耗更低、速度更快、距离更远的显著优势;
- 在理想条件下实测通信距离最远可达 16km;
- 拥有 22/30/33dBm 三种不同功率的模组可选择,并且支持软件多级可调;
- 支持频段范围 150.125MHz~170.125MHz (默认 170.125Mhz);
- LoRaTM模式下支持 0.018-62.5kbps 的数据传输速率;
- FIFO 容量大, 支持 256Byte 数据缓存;
- 向下兼容 SX1278/SX1276 系列射频收发器;
- 内置 PA+LNA, 大幅度提升通距离和通信稳定性;
- 工业级标准设计,支持-40~85°C长时间使用;
- 双天线可选(IPEX/邮票孔)便于用户二次开发,利于集成。

1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

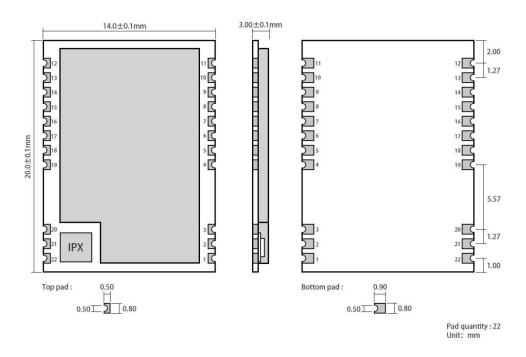
2.1 射频参数

射频参数 单位			备注		
別処参数	単 位 	E22-170M22S E22-170M30S E22		E22-170M33S	一
发射功率	dBm	22	30	33	
			晴朗空旷,天线增益 5dBi,天		
参考距离	m	5000	10000	16000	线高度 2.5米,空中速率
					2.5kbps
工佐頓色	MHz	$150, 125 \sim 170, 125$	$150, 125 \sim 170, 125$	150, 125 \sim 170, 125	出厂默认 170.125MHz, 信道间
工作频段 MHz 1		150.125~170.125	150.125~170.125	150.125~170.125	隔 250KHz
空中速率	bps	0.018∼62.5k	0. 018∼62. 5k	0.018∼62.5k	用户编程控制

2.2 电气参数

	电气参数 单位			- 备注			
			E22-170M22S	E22-170M22S E22-170M30S E22-170M33S		一 	
	工作电压	V	1.8~3.7	3.3~5.5	3.3~5.5		
	通信电平	V	3. 3	3. 3	3.3	使用 5V TTL 有风险烧毁	
	发射电流	mA	119	650	1200	瞬时功耗	
功耗	接收电流	mA	6. 5	14	15		
1	休眠电流	μА	0.18	2	2	软件关断	
温	工作温度	$^{\circ}$		工业级			
度	储存温度			-40 \sim +125			

注: E22-170M22S 工作电压≥3V 时,能满足输出功率需求,工作电压超过 3.7V 时有烧毁风险。E22-170M30S 和 E22-170M33S 工作电压≥5V 时,能满足输出功率需求,工作电压超过 5.5V 时有烧毁风险。

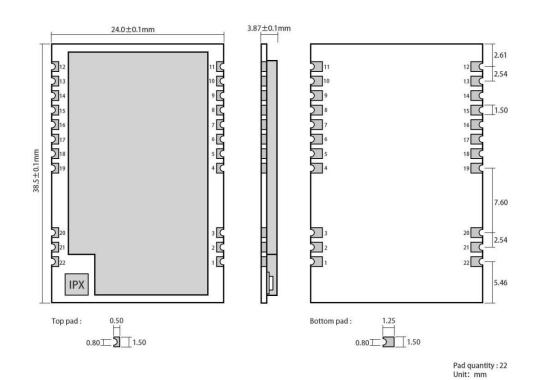


2.3 硬件参数

西州会署。		型号		备注	
硬件参数	E22-170M22S	E22-170M30S	E22-170M33S	金 注	
芯片	SX1262	SX1262	SX1262		
FIFO	256Byte	256Byte	256Byte	单次发送最大长度	
调制方式	LoRa™	LoRa™	LoRa™	新一代 LoRa™调制技术	
接口方式	邮票孔	邮票孔	邮票孔	间距 1.27mm	
通信接口	SPI	SPI	SPI	参考 SPI 速率为 3M	
产品净重	1.5±0.2g	$4.9\mathrm{g}\pm0.02\mathrm{g}$	5.1g ± 0.02g		
封装方式	贴片	贴片	贴片		
天线接口	IPEX 一代/邮票孔	IPEX 一代/邮票孔	IPEX 一代/邮票孔	特性阻抗约 50 欧姆	
尺寸	16*26*mm	24*38.5mm	24*38.5mm		

第三章 机械尺寸与引脚定义

3.1 E22-170M22S 机械尺寸及引脚定义图


引脚序号	引脚名称	引脚方向	引脚用途
1	GND	-	地线,连接到电源参考地
2	GND	-	地线,连接到电源参考地
3	GND	-	地线,连接到电源参考地
4	GND	-	地线,连接到电源参考地

5	GND	_	地线,连接到电源参考地
6	RXEN	 输入	射频开关接收控制脚,连接外部单片机IO,高电平有效
7	TXEN	输入	射频开关发射控制脚,连接外部单片机 IO 或 DIO2, 高电平有效
,	IXLI	11117	加州八次加江阿岬,是该开部平开机10 以 B102,同宅上自从
8	DIO2	输入/输出	可配置的通用 IO 口(详见 SX1262 手册) ^①
9	VCC	-	供电电源,范围 1.8V~3.7V(建议外部增加陶瓷滤波电容)
10	GND	-	地线,连接到电源参考地
11	GND	-	地线,连接到电源参考地
12	GND	-	地线,连接到电源参考地
13	DIO1	输入/输出	可配置的通用 IO 口(详见 SX1262 手册)
14	BUSY	输出	用于状态指示(详见 SX1262 手册)
15	NRST	输入	芯片复位触发输入脚,低电平有效
16	MISO	输出	SPI 数据输出引脚
17	MOSI	输入	SPI 数据输入引脚
18	SCK	输入	SPI时钟输入引脚
19	NSS	输入	模块片选引脚,用于开始一个 SPI 通信
20	GND	-	地线,连接到电源参考地
21	ANT	-	天线接口,邮票孔(50欧姆特性阻抗)
22	GND	-	地线,连接到电源参考地

注①: 如果短接 DIO 与 TXEN 引脚,则软件内需要使能 DIO2 开关控制功能。

3.2 E22-170M30S&E22-170M33S 机械尺寸及引脚定义图

 引脚序号
 引脚名称
 引脚方向
 引脚用途

 1
 GND
 地线,连接到电源参考地

 2
 GND
 地线,连接到电源参考地

3	GND	-	地线,连接到电源参考地
4	GND	-	地线,连接到电源参考地
5	GND	-	地线,连接到电源参考地
6	RXEN	输入	射频开关接收控制脚,连接外部单片机 IO。 逻辑控制请参考下表 1,控制例程请参考 EBYTE 官网 DEMO。
7	TXEN	输入	射频开关发射控制脚,连接外部单片机 IO 或 DIO2(详见 SX1262 手册)。 逻辑控制请参考 <u>下表 1</u> ,控制例程请参考 EBYTE 官网 DEMO。
8	DIO2	输入/输出	可配置的通用 IO 口(详见 SX1262 手册) ^①
9	VCC	-	供电电源,范围 2.5~5.5V(建议外部增加陶瓷滤波电容)
10	VCC	-	供电电源,范围 2.5~5.5V(建议外部增加陶瓷滤波电容)
11	GND	-	地线,连接到电源参考地
12	GND	-	地线,连接到电源参考地
13	DIO1	输入/输出	可配置的通用 IO 口(详见 SX1262 手册)
14	BUSY	输出	用于状态指示(详见 SX1262 手册)
15	NRST	输入	芯片复位触发输入脚,低电平有效
16	MISO	输出	SPI 数据输出引脚
17	MOSI	输入	SPI 数据输入引脚
18	SCK	输入	SPI 时钟输入引脚
19	NSS	输入	模块片选引脚,用于开始一个 SPI 通信
20	GND	-	地线,连接到电源参考地
21	ANT	-	天线接口,邮票孔(50Ω特性阻抗)。 由于模块内置 PA,射频芯片 SX1262 输出功率(前级)与模块实际输出功率存在放大关系,请参考下表 2。
22	GND	-	地线,连接到电源参考地
-	DIO3	输入/输出	模块内部使用,为 32MHZ TCXO 晶振供电(DIO3 配置输出 2.2V)

注①:如果短接 DIO 与 TXEN 引脚,则软件内需要使能 DIO2 开关控制功能。

第四章 基本操作

4.1 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留 30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer,在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽:
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平,必须串联 1k-5.1k 电阻(不推荐,仍有损坏风险);

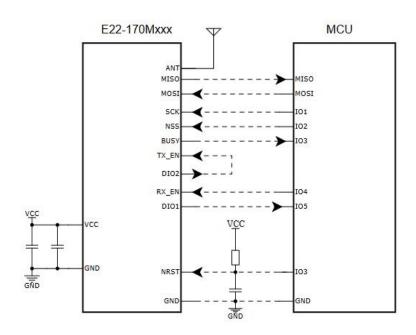
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使 用优质的天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。
- 建议在外部 MCU 的 RXD/TXD 增加 200R 的保护电阻。

4.2 软件编写

- 此模块内置射频芯片为 SX1262, 其驱动方式完全等同于 SX1262, 用户可以完全按照 SX1262 芯片手册 进行操作。
- 更多请参考官方提供的 SDK 程序,<u>https://github.com/Lora-net/sx126x_driver</u>, https://github.com/Lora-net/SWSD003。
- 内部为有源温补晶振 TCXO,注意软件驱动内对于晶振的配置。

表1 [Transceiver state control truth table]

Radio State Pin	RXEN (Input)	TXEN (Input)	备注
发送	0	1	*"0": 低电平
接收	1	0	* "1": 高电平 * RXEN、TXEN 不能同时为 "1" 。
低功耗	0	0	A LYCEN TYPEN THE PARTY I


表 2 [The RF output power control table]

E22-17	E22-170M30S		70M33S	备注
设置功率	实际功率	设置功率	实际功率	
dBm	dBm	dBm	dBm	
22	22	29. 64	33. 39	* 测试频率为 170.125MHz。
15	14	26. 42	30. 55	*每个模块的实际功率都有偏差,此表值仅作为参考。 *本表的设定功率只取一些典型值。
13	11	24. 72	27. 87	* 平农的以足切平只联一些典型值。
11	8	22. 77	24. 60	

第五章 推荐电路

5.2 E22-170M 系列推荐电路图


第六章 常见问题

6.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力,故海边测试效果差。
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

6.2 模块易损坏

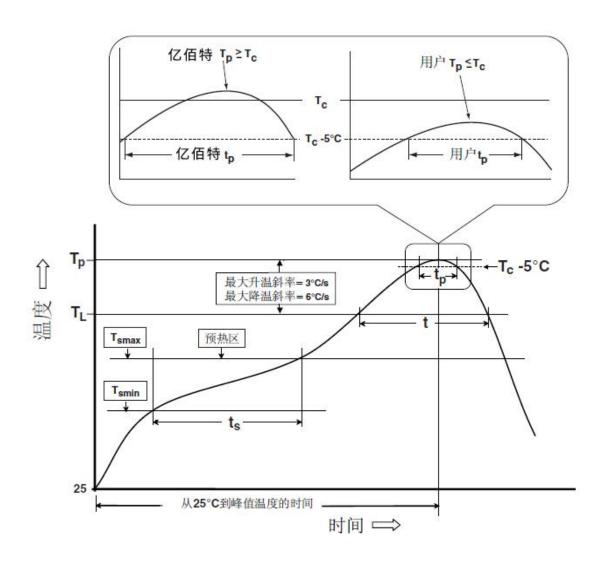
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏。
- 请检查电源稳定性,电压不能大幅频繁波动。

E290-170M 系列产品规格书

- (((•))) EBYTE
- 请确保安装使用过程防静电操作,高频器件静电敏感性。
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件。
- 如果没有特殊需求不建议在过高、过低温度下使用。

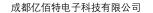
6.3 误码率太高

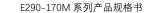
- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- SPI 上时钟波形不标准,检查 SPI 线上是否有干扰,SPI 总线走线不宜过长;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高;


第七章 焊接作业指导

7.1 回流焊温度

回流焊曲线特征		有铅工艺组装	无铅工艺组装			
	最低温度(Tsmin)	100℃	150°C			
预热/保温	最高温度(Tsmax)	150℃	200℃			
	时间(Tsmin~Tsmin)	60-120 秒	60-120 秒			
升	├温斜率(Tι~Tp)	3℃/秒,最大值	3℃/秒,最大值			
	液相温度(TL)	183℃	217℃			
	TL 以上保持时间	60~90 秒	60~90 秒			
±	封装体峰值温度 Tp 用户不能超过产品"潮湿每		用户不能超过产品"潮湿敏感度"			
±	引表冲峰追血及 Ip	标签标注的温度。	标签标注的温度。			
在指定分级温度(Tc)5℃以内的时间(Tp), 见下图		20 秒	30 秒			
降温斜率(Tp~TL)		6℃/秒,最大值	6℃/秒,最大值			
室温到峰值温度的时间		6 分钟,最长	8分钟,最长			
※温度曲线的	※温度曲线的峰值温度(Tp)容差定义是用户的上限					




7.2 回流焊曲线图

第八章 相关型号

产品型号	芯片方案	载波频率 Hz	发射功率 dBm	测试距离 km	封装形式	产品尺寸	通信接口
		115	32M	*****			
E22-400M22S	SX1268	433/470M	22	5	贴片	14*20	SPI
E22-900M22S	SX1262	868/915M	22	5	贴片	14*20	SPI
E22-900M33S	SX1262	433/470M	33	16	贴片	24*38.5	SPI
E22-900M30S	SX1262	868/915M	30	10	贴片	24*38.5	SPI

第九章 天线指南

9.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套 我司无线模块且性能较为优秀且价格合理的天线。

产品型号	类型	频段 Hz	接口	增益 dBi	高度 mm	馈线 cm	功能特点
TX170-XP-200	吸盘天线	170M	SMA-J	4.0	500	200	小型吸盘天线,全向天线
TX170-JKD-20	胶棒天线	170M	SMA-J	3.0	200	-	弯折胶棒,全向天线
TX170-JK-11	胶棒天线	170M	SMA-J	2.5	110	_	弯折胶棒,全向天线

修订历史

版本	修订日期	修订说明	维护人
V1.0	2025-4-16	初始版本	Hao

关于我们

销售热线: 4000-330-990

技术支持: <u>support@cdebyte.com</u> 官方网站: <u>www.ebyte.com</u>

公司地址:四川省成都市高新西区西区大道 199 号 B5 栋

